Worldwide ancient lakes

Worldwide ancient lakes: Geological evolution

Worldwide ancient lakes: Biological evolution

 Lake	Total # endemic species	A LAT		
Baikal	> 1200		4	200
Malawi	> 1000			
Tanganyika	> 800			
Ohrid	> 300			A Manuar
Titicaca	64		-	
Biwa	59		And	

Lake Ohrid endemic biodiversity

~	Lake	Total # endemic species	Lake size in km²	Endemic biodiversity index (log N x log A ⁻¹)	
	Baikal	> 1200	31.494	0.68	
	Malawi	> 1000	29.600	0.67	
	Tanganyika	> 800	32.900	0.64	
	Ohrid	> 300	360	0.97	
	Titicaca	64	8.372	0.46	
	Biwa	59	670	0.62	

The oldest lake in Europe: Lake Ohrid

- Length: 30.3 km
- Width: 15.6 km
- Max. depth: 293 m
- Water balance: ~50% sublacustrine springs; ~50% precipitation
- Age: ?

Macedonia Albania Lake Ohrid Greece

Photo: Wilke (2014)

Lake Ohrid endemic biodiversity

Dolapia ornata

Gocea ohridana

Macedopyrgula wagneri

The unique biosphere of Lake Ohrid: Linking geological and biological evolution

Tom Wilke

The SCOPSCO ICDP campaign

- Interdisciplinary research project linking the geological and biological histories of Lake Ohrid
- Major goals are to obtain information about:
 - 1) age and origin of Lake Ohrid,
 - 2) the seismotectonic history of the lake area,
 - 3) volcanic activities and climatic changes during the Quaternary, and

4) the driving forces for biotic evolution.

Multidisciplinary questions \Box interdisciplinary questions

Goal 1: Age and origin of Lake Ohrid

- Hypothesis 1: Mesohellenic Trough derivate hypothesis
- Hypothesis 2: Tethys derivate hypothesis
- Hypothesis 3: Lake Pannon derivate hypothesis
- Hypothesis 4: *de novo* hypothesis

Age and origin of Lake Ohrid: Biology

• Operational criteria for testing the paleolimnological history of Lake Ohrid

	'Mesohellenic Trough hypothesis'	'Tethys derivate hypothesis'	'Lake Pannon hypothesis'	' <i>de novo</i> hypothesis'
Timeframe of evolution	> 8-10 My	> 5-7 My	> 5-7 My	< 5 My
Ancestral area	Aegean Basin	Adriatic Region	Paratethys	central Balkan
Paleohabitat	brackish or marine	brackish or marine	brackish	freshwater

- Age: Molecular clock coalescent approach
- Ancestral area: Ancestral state reconstruction
- Paleohabitat: Ancestral state reconstruction & paleohabitat modeling

Age and origin of Lake Ohrid: Biology

• The molecular clock:

The molecular clock

- Onset of endemic radiations: 1.5–1.9 (2.6) My ago
- Split to outside sister groups: 2.2–5.0 My ago

Molecular clock estimates

Age and origin of Lake Ohrid: Biology

• Ancestral state reconstruction: area and habitat

Ohrid species

Outside species

Age and origin of Lake Ohrid: Sedimentology

Core catcher material at 569 m blf

Modified from Wagner et al. (2014)

Age and origin of Lake Ohrid: Geophysics

Age and origin of Lake Ohrid: Linking geology and biology

	Biology	Geophysics	Sedimentology	Synthesis
Age	Min./max. 1.5–2.2 My	Max. 2.0 My	Min. 1.4 My	1.5–2.0 My
Origin	spring/river	riverine?	riverine	non-lacustrine freshwater

de novo hypothesis

Goal 2: Driving forces for biotic evolution

Evolutionary refugium Intralacustrine speciation

Driving forces: Sedimentology

• Past 640 ky: Major environmental changes but no evidence for salinization events etc.

Francke et al. (2015)

Driving forces for biotic evolution: Geophysics

Largely undisturbed sediments: probably no desiccation events

Driving forces for biotic evolution: mol. Biology

- 45.7.6.7.A.I 0 Mya Pliocene Pleistocene Miocene
- Most species: intralacustrine evolution
- LTT's: no deviation from constant speciation model

Driving forces for biotic evolution: Paleontology

• Mollusk fossil record does not indicate major extinction events

Modified from Albrecht et al. (2010)

Driving forces for biotic evolution: Paleontology

Driving forces for biotic evolution: Paleontology

 Response of endemic taxa to environment disturbances: High ecosystem resilience of Lake Ohrid

Benthic diatom community structure in Lake Ohrid (Jovanovska et al. 2015)

Driving forces for biotic evolution: Linking geology and biology

	Geophysics	Sedimen- tology	Pale- ontology	Mol. Biology	Synthesis
Reservoir vs. cradle	N/A	N/A	Mostly reservoir	Mostly reservoir	Mostly reservoir
Catastrophic events	No evidence	No evidence	No evidence	No evidence	Unlikely
Ecosystem resilience	N/A	N/A	High	High	High

- Main (nonexclusive) drivers of high endemic biodiversity:
 - High rate of intralustrine speciation
 - High ecosystem resilience \rightarrow reduced extinction events
 - Lack of catastrophic events \rightarrow no ecosystem reset

Take home message

- The SCOPSCO program: linking geological and biological histories
 - Provide an ideal basis for interdisciplinary research
 - Enable testing of geological and biological hypotheses
 - Modern advances in evolutionary research allow for the generation of complementary data sets
- What next?

 Site 1 (DEEP)
 Site 3 (GRADISTE)

 - 1B: 480 m
 - 3B: 82 m

 - 1C: 480 m
 - 3C: 120 m

 - 1D: 569 m
 - 3D: 116 m

 - 1F: 550 m
 Site 4 (PESTANI)

 - 2A: 85 m
 - 4A: 194 m

 - 2B: 90 m
 - 4A: 194 m

Thank you!