# Fundamentals of downhole logging and interpretation of downhole logging data in lake drilling projects



# Outline

I Fundamentals of downhole logging

- tools and applications
- logging environment / integration of core data

Il Interpretation of downhole logging data in lake drilling projects: Lake Van and Lake Ohrid



# **Downhole logging tools**



#### LIAG tools:

- slimhole logging for hole sizes
   of 75 250/500 mm
- open borehole wall required, cased hole limited
- temp. < 70 °C, depth < 1400 m
- digital data transmission
- logging time (single tool = 1 run)
  3 10 m/min (180 600 m/h)
- tool is "run into hole" and logged from bottom to top

# **Overview of methods**

|           |             | tools                                                                             | output                                                                                                                                                |  |  |  |
|-----------|-------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|           | radiocative | gamma ray, spectral gamma ray<br>density<br>neutron logging<br>gamma spectroscopy | summe of gamma ray, K-, U-, Th-contents<br>bulk density, photoelectric factor<br>neutron porosity, water content<br>Si, Ca, Fe, O, C, H (intensities) |  |  |  |
|           | acoustic    | Sonic<br>vertical seismic profile<br>borehole televiewer                          | p- and s-wave velocity<br>p-wave velocity; correlation of surface seismics<br>acoustic image of the borehole wall                                     |  |  |  |
| electric/ | electromag. | dipmeter/magnetics<br>Dual Laterolog<br>magnetic susceptibility                   | structural & sedimentary features, magnetic field<br>resisitivity at shallow and deep depth of investigation<br>magnetic properties                   |  |  |  |
|           | misc.       | caliper<br>milieu                                                                 | borehole size, hole conditions, borehole path temperature, salinity of the drilling mud                                                               |  |  |  |

# Radioactive methods – spectral gamma ray



- summ of gamma rays and spectral components of potassium (K), thorium (Th) and uranium (U)
- scintillation detector: Bismuth germinate (BGO; 5x15 cm)
- vertical resolution ~ 15 20 cm, limited by crystal-size
- gAPI unit: definded by the American Petroleum Institute in Houston (standard pit with lowand high radioactive cement)

# **SGR - typical log response**



useful discriminator
 between shale and sand
 based on abundance of K,
 Th and U in clay minerals

increased gamma ray in e.g. K-feldspars rich sands
/ silts or acidic volcanic deposits

 spectral components provide additional information about gamma ray "source"

# SGR - grain size sensitivity



Rider & Kennedy, 2011

# **SGR** – environmental interpretation



Rider & Kennedy (2011)

#### Use of Th/U ratio

- Possible indication of more continental depositional environment
- Th: resistant to weathering, reflect detrital input
- U: sollubility depend on redox state, often associated to organic matter
- high Th/U: continental environment
- low Th/U: less continental influence

# **Density**



- active emission of gamma rays by a caesium source (<sup>137</sup>Cs)
- interaction with formation and detection of secondary radiation
- Compton scattering: collision between gamma rays and electrons produces lowering of energy
- response depend on formation density
- use in foreign countries difficult!

### **Density – typical log response**



Rider & Kennedy, 2011

#### **Density Logs – stratigraphic boundaries**



- example of density logging in Cretaceous and Tertiary shales
- unconformity marked by strong contrast in bulk density

#### **Neutron porosity**



- neutrons interact with formation, energy loss by elastic scattering
- strongest slowing down / loss of energy by collision with hydrogen (mass ≡ neutrons)
- detectors measure energy
   loss after passing through
- response depend on water content

# Neutron porosity – typical log response



- tool calibrated in limestone matrix
- neutron porosity ≠ porosity
- other rocks / sediments: correction needed
- response from pore water + clay bound water + water of cristallisation!
- high apparent neutron porosity values in clay bearing formations but no effective porosity

### **Overlay technique: combination of parameters**



- very good lithological discriminator
- scaling technique with reference to limestone matrix
- "Quick look" interpretation, developed for identification of porous sandstone (reservoir)

Rider & Kennedy, 2011

# Sonic



- acoustic signal is emitted by an acoustic transmitter and detected after passing through formation by two receivers
- tool measures runtime and amplitude of the waves
- determination of travel time / acoustic velocity vp, vs (m/s)
- sensitive to cavings / bad borehole conditions
- vertical resolution ~ 20 cm



# **Sonic - typical log response**



- velocity depend on lithology but overlapping value ranges
- compaction of sediments / rocks affects acoustic characteristics strongly
- general increasing velocity with greater depth (porosity reduced)

Rider & Kennedy, 2011

# Resistivity



- Dual Laterolog tool (DLL): dual focused electrical current passes through formation
- voltage drop is measured in two depth of investigations:
- 1) shallow close to the borehole wall,
- 2) deep at a distance of 30 100 cm from the borehole
- vertical resolution ~ 10 15 cm
- majoritiy of minerals have very high resitivities (Ω\*m), except clay minerals (negatively-charged surface layers)
- conduction mainly by fluids

# **Resistivity – typical log response**



 typical lithological resistivity values / ranges (log-scale!)

 mainly controlled by texture: grain size, sorting,...

 can be used to detect slight texture changes in sedimentary facies

# **Magnetic susceptibility**



transmitter and receiver coil

 electromagnetic method; electromagnetic field of a frequency of 1 kHz is induced

 measure of the magnetisability of rocks / sediments

conventional SUSZ:

vertical resolution of ~ 20 cm

micro SUSZ:

vertical resolution of ~ 2 cm small depth of investigation

# **SUSZ - typical log response**





Palm, 2014

#### sediments:

- mainly controlled by occurrence of ferrimagnetic minerals (Feoxides)
- smaller effect from paramagnetic
   (e.g. biotite) and diamagnetic
   minerals (CaCO<sub>3</sub>)
- depend on sediment
   composition, e.g. occurence of
   volcanogenic material
- grain size: magnetite occur mostly in clay fraction
- detrital input: sea level / lake
   level changes, surface runoff

# **SUSZ – stratigraphic boundary**



- susceptibility log from Fraser river delta (Canada)
- strong change at stratigraphic boundary in SUSC, little contrast in gamma ray
- logs can support stratigraphic
   classification e.g. Pleistocene-Holocene boundary

Mc Neil et al., 1996

## Well Log Response Chart

| Lithology Fluid                                  | Gamma Ray | Caliper   | SP         | Density          | Neutron          | Resistivity      | Sonic            |
|--------------------------------------------------|-----------|-----------|------------|------------------|------------------|------------------|------------------|
| Shale                                            |           |           |            |                  |                  |                  |                  |
| Limestone Fresh<br>Water                         |           |           |            |                  |                  |                  |                  |
| Shale                                            |           |           | 5          | $\left( \right)$ | $\left[ \right]$ | $\left( \right)$ | $\left[ \right]$ |
| Argillaceous Salt<br>or shaly Water<br>sandstone |           | {         | $\int$     |                  |                  |                  |                  |
| Sandstone                                        |           |           |            |                  |                  |                  |                  |
| Shale                                            |           | $\square$ | $\bigcirc$ |                  |                  |                  |                  |
| Limestone Gas<br>Oil<br>Salt<br>Water            |           |           |            |                  |                  | }                | MM               |

**ARM Geophysics**, 2013

# Logging environment



- mud invasion close to borehole wall
- disturbance due to drilling (cavings, washouts)
- depth of investigation range from cm to m-scale



depth of invasion

#### **Vertical resolution**



### **Drillers depth vs. loggers depth**



#### drillers depth (core depths)

- single length of pipes compiled
- possible errors:

length "forgotten", new tools with different length not accounted for, elastic pipe stretch (weight on bit)

#### loggers depth

- length of cable going down is measured
- possible errors:

cable stretching, tool sticking, frictional forces, measuring wheel accuracy (calibration), zeroing

# Logging of short sections



### Depth matching of core and logging data: simple example



- matching of K-log with Kintentities from cores)
- high core recovery, high data quality, simple to depth match
- some (minor) systematic shifts
- common / cannot be avoided due to, e.g.:
  a) gas extension (core stretching) or b) core gaps

### **Depth matching: difficult example**



- matching of susceptibility
- depth shifts up to +/- 2.5 m ( $\uparrow\downarrow$ )
- difficult due to:
- 1) (partly) low core recovery (depth allocation of core segment??)
- 2) logging of one hole and composite profile from multiple holes (vertical depth of layers differ up to meters)

#### agreement:

no reference depth, individual depths for datasets; integrated interpretation difficult

### Excercise



- sandstone and shale (cretaceous; North German Basin)
- Caliper: borehole size (diameter)
- Caliper >> Bitsize!

# **Combined evaluation**

