# Il Interpretation of downhole logging data in lake drilling projects



#### Lake Van – facies characterization



# Facies characterization based on physical properties from downhole logging for the sediment record of Lake Van, Turkey



H. Baumgarten\*, T. Wonik, O. Kwiecien

Leibniz Institute for Applied Geophysics (LIAG), Rock Physics & Borehole Geophysics, Stilleweg 2, 30655 Hannover, Germany

#### A R T I C L E I N F O

Article history: Received 31 August 2013 Received in revised form 12 January 2014 Accepted 19 March 2014 Available online 13 April 2014

#### ABSTRACT

Lake Van (Turkey) is the 4th largest terminal lake in the world and is located at a key position for climatic reconstruction. The ICDP project 'PALEOVAN' is a deep-drilling campaign initiated in the summer of 2010 to enhance the understanding of paleoclimatic and paleoenvironmental conditions in the Middle East for a period of 550,000 years. Multiple coring of two sites (Northern Basin and Ahlat Ridge) at a water depth of up to 360 m has been performed. The sedimentary record is mainly composed of clayey silts and tephra deposits that were supplied by four volcanic sources: 1) the Süphan volcano, located on the





## **PALEOVAN project and history**

#### **Setting**

- terminal lake (surface area 3750 km<sup>2</sup>), age > 600 ka
- hydrological change recorded (lake terraces)
- surrounded by volcanoes
- first studies in 1970ies (shallow coring, seismics)
- deep coring campain in 2010
  (Sites: 1. Northern Basin and

#### 2. Ahlat Ridge)



Litt et al., 2009





## **PALEOVAN drilling project**



Litt et al., 2012

Stockhecke et al., 2014

Litt et al., 2009

icdp-online.org

### Acquisition of downhole logging data



#### **Method - cluster analysis**





#### Target

- combined interpretation of all available logging data
- continuous lithological reconstruction

#### **Output**

- cluster (groups) with similar combination of properties
- cluster correspond to lithological unit

#### <u>Tasks</u>

- choose number of cluster (dendrogram)
- relate cluster to lithology(core/cutting description required)

#### **Cluster analysis of downhole and core data**



properties

#### Physical and chemical properties of tephra



Volcanic sources and their dominant compositions

- (1) Nemrut volcano, trachytic to rhyolitic.
- (2) Süphan volcano, dacitic to rhyolitic.
- (3) Incekaya, basaltic.
- (4) Intralake eruptive centres, intermediate to trachytic.

correlation of tephra units 1-3 with volcanic sources / dominant volcanic composition?

#### Linking of tephra layers to dominant volcanic composition



#### Linking of tephra layers to dominant volcanic composition



| Classification              | dacitic-rhyolitic<br>(Süphan?) | trachytic-rhyolitic<br>(Nemrut?) | basaltic<br>(Incekaya?) | Intralake<br>centres | Log-/XRF<br>response |
|-----------------------------|--------------------------------|----------------------------------|-------------------------|----------------------|----------------------|
| $Na_2O + K_2O$              | med.                           | high                             | low                     | variable             | GR/K                 |
| $FeO + Fe_2O_3$             | med.                           | low                              | high                    |                      | SUSC                 |
| CaO                         | low                            | low                              | high                    |                      | Са                   |
| Zr                          | med high                       | high                             | low                     |                      | Zr                   |
| Th                          | med high                       | med high                         | low                     |                      | Th                   |
| link to cluster<br>analysis | tephra 1                       | tephra 2                         | tephra 3                | ??                   |                      |

#### **Characterization of volcanic facies**



### Lake Ohrid – Age depth-model



Biogeosciences Discuss., 12, 7671–7703, 2015 www.biogeosciences-discuss.net/12/7671/2015/ doi:10.5194/bgd-12-7671-2015 © Author(s) 2015. CC Attribution 3.0 License. Biogeosciences Discussions

This discussion paper is/has been under review for the journal Biogeosciences (BG). Please refer to the corresponding final paper in BG if available.

#### Age depth-model for the past 630 ka in Lake Ohrid (Macedonia/Albania) based on cyclostratigraphic analysis of downhole gamma ray data

H. Baumgarten<sup>1</sup>, T. Wonik<sup>1</sup>, D. C. Tanner<sup>1</sup>, A. Francke<sup>2</sup>, B. Wagner<sup>2</sup>, G. Zanchetta<sup>3</sup>, R. Sulpizio<sup>4</sup>, B. Giaccio<sup>5</sup>, and S. Nomade<sup>6</sup>

<sup>1</sup>Leibniz Institute for Applied Geophysics, Hannover, Germany
 <sup>2</sup>University of Cologne, Institute for Geology and Mineralogy, Cologne, Germany
 <sup>3</sup>University of Pisa, Dipartimento di Scienze della Terra, Pisa, Italy
 <sup>4</sup>University of Bari Aldo Moro, Dipartimento di Scienze della Terra e Geoambientali, Bari, Italy
 <sup>5</sup>Instituto di Geologia Ambientale e Geoingegneria – CNR, Roma, Italy
 <sup>6</sup>Laboratoire des Sciences du Climat et de l'Environnement, IPSL, laboratoire CEA/CNRS/UVSQ, Gif-Sur-Yvette, France

Received: 18 February 2015 - Accepted: 13 April 2015 - Published: 22 May 2015

Correspondence to: H. Baumgarten (henrike.baumgarten@liag-hannover.de)

Published by Copernicus Publications on behalf of the European Geosciences Union.

7671



## **SCOPSCO drilling project**





Wagner et al., 2014



SCOPSCO: <u>Scientific Collaboration On Past</u> Speciation <u>Conditions in Lake Ohrid</u>

**ICDP** campaign in 2013

key objective:

reconstruction of Lake Ohrid's climatic, tectonic and evolutionary biological history



### **Sediment cores**





#### Coring tools

HPC: hydraulic piston, XTN: extended nose, ALN: Alien

- 1526 m of cores, 95% recovery <u>Sediment facies</u>
  0 - 433 m: pelagic (clayey silt + tephra layers, range of cm)
  A) high detrital clastic-content, low carbonate
  B) high carbonate-content low
- B) high carbonate-content, low clastics
- > 433 m: shallow water (gravel, silt, sand)



#### **Downhole logging data 0 – 433 m: pelagic facies**



### **Orbital cycles from downhole logging**



- study of environmental proxies from sediment cores (element distribution, pollen,...)
- temporal framework required, use of dating methods and tuning
- cyclostratigraphic studies can be used to construct age depth-models

### Correlation of GR and K with $\delta^{18}O$ (0 to 240 mblf)



8 age depth-points
from tephrostratigraphy
depth matching:

K (SGR-logging with XRF-scanning)

2) susceptibility

(downhole with Multi Sensor Core Logging)

#### **Method - spectral analysis**

data contains cycles of different wavelengths

Synthetic data-set and spectral components



Weedon, 2003

### **Evolution of cycles and intervals**

3.7

4.4

6.9

5.4

wavelength (m)

3.2



### Sedimentation rates and duration of desposition



- dominance of 100 ka cycle in sedimentary records
- (1) sedimentation rate [cm/ka]
  = wavelength [m] / cycle [ka]
  interval I: 45 m ≡ 100 ka → 45 cm/ka
  interval II: 30 m ≡ 100 ka → 30 cm/ka

(2) duration of deposition [ka] = length of interval [m] / sedimentation rate [cm/ka] = 677 ka

#### Sedimentation rates and age depth-model



sediments with high carbonate content