

Helmholtz Centre POTSDAM

Helmholtz Centre Potsdam **GFZ GERMAN RESEARCH CENTRE** FOR GEOSCIENCES

Online Gas Monitoring of Drilling Mud

Overview

Online monitoring of gas from circulating drilling mud has been proven being a reliable and inexpensive technique to obtain information on the composition

Experimental Setup

For online drilling mud gas analysis, the dissolved gas is (1) continuously extracted from returning drilling mud in an airtight gas-water separator located at the "possum belly", (2) pumped in a field laboratory nearby the shale shakers, (3) automatically analysed for its composition (CO_2 , N_2 , H_2 , O_2 , He, Ar, CH_4 , C_2H_6 , C_3H_8 , $i/n-C_4H_{10}$, and ²²²Rn) in real-time, and (4) automatically sampled for further studies (stable isotopes, noble gases).

• Online drilling mud gas monitoring is suitable to detect fluid-bearing horizons, shear zones, open fractures, sections of enhanced permeability and methane hydrate occurrences in the subsurface of fault zones [3, 4, 6], volcanoes [5], geothermal

• Off-site isotope studies on mud gas samples help reveal the origin, evolution, and migration

• It also has important application to aiding decisions if and at what depth rock or fluid samples should be taken or formation testing should be performed.

For more information please contact

Thomas Wiersberg Scientific Drilling GFZ German Research Centre for Geoscience Phone +49 331 288 1081 Fax +49 331 288 1088 wiers@gfz-potsdam.de

www.gfz-potsdam.de

References

[1] Erzinger, J., Wiersberg, T. and Zimmer M. (2006) Real-time mud gas logging and sampling during drilling, Geofluids 6, 225-233

[2] Wiersberg, T., Erzinger, J., Zimmer, M., Schicks, J., and Dahms, E. (2004) Real-time gas analysis at the Mallik 2002 Gas Hydrate Production Research Well; in Scientific Results from Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada, (ed.) S.R. Dallimore and T.S. Collett; Geological Survey of Canada, Bulletin 585 pp. 15.

[3] Erzinger J., Wiersberg T. and Dahms E. (2004) Real-time mud gas logging during drilling of the SAFOD Pilot Hole in Parkfield, CA, Geophys. Res. Lett. 31, L15S18, doi: 10.1029/2003GL019395

[4] Wiersberg T. and Erzinger J. (2007) A helium isotope cross-section study through the San Andreas Fault at seismogenic depths, G-cubed 8, No. 1, doi: 10.1029/2006GC001388

[5] Tretner, A., Zimmer, M., Erzinger, J., Nakada, S., Saito, M. (2008) Real-time drill mud gas logging at the USDP-4 drilling, Unzen volcano, Japan. Journal of Volcanology and Geothermal Research, 175(1-2):28-34

[6] Wiersberg T. and Erzinger J. (2008) On the origin and spatial distribution of gas at seismogenic depths of the San Andreas Fault from drill-mud gas analysis, Applied Geochemistry 23, 1675-1690, doi:10.1016/j.apgeochem.2008.01.012

